准确把握区域能源消费碳排放的差异化关键领域和异质性减排抓手是实现“双碳”目标的重要前提。为了进一步厘清区域能源消费碳排放时空特征及影响因素,以川渝地区为例,兼顾化石能源燃烧和区域电力调配两大单元构建能源消费碳排放清单,基于Kaya恒等式和LMDI模型实证检验多元影响因素的作用效应。研究结果表明:① 2015—2022年四川能源消费碳排放量呈下降趋势,而重庆呈上升趋势,这由于可再生能源的资源禀赋差异。从部门构成上看,能源加工转换碳排放集中于火力发电和供热。终端消费中工业为第一大排放源,其次是交通运输业和居民生活,商业和其他服务业也不容忽视,农业和建筑业碳贡献较小。四川通过外输大量水电在保障能源供需安全的同时推动低碳发展,重庆依赖外部电源出力而间接增加碳贡献。② 能源消费结构为抑制因素,其对四川碳减排的贡献逐年增加但对重庆影响较小。能源消费强度为减缓碳排放的关键因素,2016—2017年得益于能源“双控”考核其抑制作用出现峰值。对于四川产业结构为抑制因素且影响逐步减小,对于重庆其影响随着第二产业占比变化而先升后降。经济发展为加速碳排放的关键因素,在低碳新格局下影响逐年减小。人口发展效应取决于规模、文明和配置效应的综合影响。
Abstract
Holding the decisive essence leading to some regional variations in the carbon emission from energy consumption and taking relevant emission-reduction measures are the prerequisites for achieving the dual-carbon goal. Therefore, taken Sichuan-Chongqing area as an example, a carbon-emission inventory which regarded both fossil-fuel combustion and power allocation in different areas was constructed, and the effect of multiple influential factors was discussed on the basis of the Kaya Identity and LMDI model in order to figure out both temporal-spatial characteristics and influential factors of this emission. Results show that (i) a decreasing trend emerged in the carbon emission from energy consumption in Sichuan Province from 2015 to 2022 while an increasing trend in Chongqing City due to the endowment diversity among renewable energy resources. The emission from energy processing and conversion is rooted in thermal power generation and heating sectors. In terms of terminal expenditure, the largest emission source comes from industrial field, followed by transportation and residential life, then business and other services, and both agriculture and building industry making a small contribution to the emission. Sichuan advances the low-carbon strategy in addition to ensuring the energy's supply-demand security through transporting large amount of water and electricity resources, while Chongqing indirectly raises its carbon contribution via relying on external power output; and (ii) as an inhibiting factor, the structure of energy use makes the incremental contribution to the Sichuan's emission year by year while little impact in Chongqing. For the energy intensity as a key factor for emission reduction, its inhibition peaked in 2016-2017 due to benefits from the dual control in the energy use. The industrial structure in Sichuan is an inhibition factor as well, and its influence is slowly diminishing, while that in Chongqing increases first and then decreases with changes of secondary industries' proportion. The economic growth whose effect is on the decease each year under the new pattern of low carbon is also a critical factor in emission acceleration. The effect of population development is affected by population size, social culture, and resource allocation comprehensively.
关键词
能源消费 /
碳排放 /
时空特征 /
影响因素 /
川渝地区
{{custom_keyword}} /
Key words
Energy consumption /
Carbon emission /
Spatial-temporal characteristics /
Influential factor /
Sichuan-Chongqing area
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MINX J C,LAMB W F,ANDREW R M,et al.A comprehensive and synthetic dataset for global,regional,and national greenhouse gas emissions by sector 1970-2018 with an extension to 2019[J]. Earth System Science Data,2021,13(11):5213-5252.
[2] 李乔楚,张鹏,罗平亚. “双碳”目标下四川省天然气产业低碳发展策略研究 —— 集成系统动力学和清单算法[J]. 科技管理研究,2024,44(23):197-206.
LI Qiaochu,ZHANG Peng,LUO Pingya.Research on the low-carbon development strategy of natural gas industry in Sichuan Province under carbon peaking and carbon neutrality goals:Integrating system dynamics and inventory accounting method[J]. Science and Technology Management Research,2024,44(23):197-206.
[3] BAMISILE O,WANG X K,ADUN H,et al.A 2030 and 2050 feasible/sustainable decarbonization perusal for China's Sichuan Province:A deep carbon neutrality analysis and EnergyPLAN[J]. Energy Conversion & Management,2022,261:115605.
[4] 李乔楚,陈军华. “碳达峰”目标下区域综合能源系统低碳转型研究 —— 以四川省为例[J]. 安全与环境学报,2025,25(1):388-398.
LI Qiaochu,CHEN Junhua.Study on the low-carbon transformation of regional integrated energy systems towards achieving "carbon peaking":A case study of Sichuan province[J]. Journal of Safety and Environment,2025,25(1):388-398.
[5] IPCC. 2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. Kyoto:IGES,2019.
[6] 国家气候变化对策协调小组办公室,国家发展和改革委员会能源研究所. 中国温室气体清单研究[M]. 北京:中国环境科学出版社,2007.
Office of the national climate change response coordination group,Energy Research Institute of National Development and Reform Commission. The People's Republic of China national greenhouse gas inventory[M]. Beijing:China Environmental Science Press,2007.
[7] 中华人民共和国发展和改革委员会. 省级温室气体清单编制指南[R]. 北京:国家发展和改革委员会,2011.
National Development and Reform Commission. Guidelines for the preparation of provincial greenhouse gas inventories (Trial)[R]. Beijing:National Development and Reform Commission,2011.
[8] ZHAO Y,NIELSEN C P,MCELROY M B.China's CO2 emissions estimated from the Bottom up:Recent trends spatial distributions and quantification of uncertainties[J]. Atmospheric Environment,2012,59:214-223.
[9] ZHEN W N,ZANG M R,WANG Y S,et al.Integrated analysis of energy carbon emissions and air pollution in Ningxia based on MGWR and multisource remote sensing data[J]. Arabian Journal of Geosciences,2023,16:522.
[10] TIMOFEYEV Y M,NEROBELOV G M,VIROLAINEN Y A,et al.Estimates of CO2 anthropogenic emission from the megacity St.Petersburg[J]. Doklady Earth Sciences,2020,494(1):753-756.
[11] 詹梨苹,赵锐,刘思瑶,等. 基于清单核算法的社区碳排放时空分布特征[J]. 四川环境,2020,39(3):182-188.
ZHAN Liping,ZHAO Rui,LIU Siyao,et al.Spatial and temporal distribution characteristics of community carbon emissions based on inventory accounting method[J]. Sichuan Environment,2020,39(3):182-188.
[12] MITRA N,SHAHRIAR S A,LOVELY N,et al.Assessing energy-based CO2 emission and workers' health risks at the shipbreaking industries in Bangladesh[J]. Environments,2020,7(5):35.
[13] 杨青,彭若慧,刘星星,等. 基于地理加权回归的省域碳排放影响因素研究[J]. 环境工程技术学报,2023,13(1):54-62.
YANG Qing,PENG Ruohui,LIU Xingxing,et al.Study on influencing factors of provincial carbon emission based on geographically weighted regression[J]. Journal of Environmental Engineering Technology,2023,13(1):54-62.
[14] 刘元欣,邓欣蕊. 我国碳排放影响因素的实证研究 —— 基于固定效应面板分位数回归模型[J]. 山西大学学报(哲学社会科学版),2021,44(6):86-96.
LIU Yuanxin,DENG Xinrui.An empirical study on the influencing factors of carbon emission in China:Based on fixed effect panel quantile regression model[J]. Journal of Shanxi University(Philosophy and Social Science Edition),2021,44(6):86-96.
[15] PENG D,LIU HB.Measurement and driving factors of carbon emissions from coal consumption in China based on the Kaya-LMDI model[J]. Energies,2023,16(1):439.
[16] 杨绍华,张宇泉,耿涌. 基于LMDI的长江经济带交通碳排放变化分析[J]. 中国环境科学,2022,42(10):4817-4826.
YANG Shaohua,ZHANG Yuquan,GENG Yong.An LMDI-based investigation of the changes in carbon emissions of the transportation sector in the Yangtze River Economic Belt[J]. China Environmental Science,2022,42(10):4817-4826.
[17] LI W J,YU X Z,HU N,et al.Study on the relationship between fossil energy consumption and carbon emission in Sichuan Province[J]. Energy Reports,2022,8(4):53-62.
[18] 王茜,王善礼,董楠娅. 碳达峰背景下区域碳排放强度影响因素及空间溢出性研究 —— 以重庆市为例[J]. 软科学,2022,36(7):97-103.
WANG Qian,WANG Shanli,DONG Nanya.Research on the influencing factors and spatial spillover of carbon emission intensity under the background of carbon peak:Based on the empirical analysis of Chongqing[J]. Soft Science,2022,36(7):97-103.
[19] 陶俊逸,赵筱青,陈彦君,等. 云南省能源消费碳排放时空演变及其影响因素[J]. 环境科学与技术,2023,46(9):178-187.
TAO Junyi,ZHAO Xiaoqing,CHEN Yanjun,et al.Spatial and temporal evolution of carbon dioxide emissions from energy consumption and influencing factors in Yunnan Province[J]. Environmental Science & Technology,2023,46(9):178-187.
[20] KAYA Y.Transportation and energy in Japan[J]. Energy,1983,8(1):15-27.
[21] ANG B W.LMDI decomposition approach:A guide for implementation[J]. Energy Policy,2015,86:233-238.
[22] 李乔楚,陈军华. 能源转型战略对绿色发展效率的影响效应与机制检验 —— 基于四川省的实证[J]. 油气与新能源,2024,36(5):104-115.
LI Qiaochu,CHEN Junhua.The impact of energy transformation strategy on the green development efficiency and its mechanism test:An empirical study of Sichuan Province[J]. Petroleum and New Energy,2024,36(5):104-115.
[23] 四川省人民政府. 四川省人民政府关于印发《四川省“十四五”服务业发展规划》的通知[EB/OL]. (2021-12-13)[2024-07-02]. https://www.sc.gov.cn/10462/zfwjts/2021/12/16/cb8f9fb60cd74f40ae6b356563e4bcd5.shtml.
The People's Government of Sichuan Province. Notice of the People's Government of Sichuan Province on issuing the "14th Five Year Plan for the development of service industry in Sichuan Province"[EB/OL]. (2021-12-13)[2024-07-02]. https://www.sc.gov.cn/10462/zfwjts/2021/12/16/cb8f9fb60cd74f40ae6b356563e4bcd5.shtml.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家社会科学基金西部项目“‘双碳’目标下我国城市群能源系统碳达峰预测及差异化减排路径研究”(编号:22XGL019)、国家社会科学基金重大项目“能源革命驱动下的天然气产业高质量发展路径研究”(编号:22&ZD105)、四川省哲学社会科学重点研究基地学术研究专项资助“新质生产力赋能四川天然气产业高质量发展的作用机理及政策建议”(编号:SC24E091)、2024年成都市哲学社会科学规划项目“面向深度脱碳的成都新型能源体系构建研究”(编号:2024BS072)
{{custom_fund}}